• This infographic explains how to calculate the exact amounts of cement, sand, and gravel needed for M20 grade concrete.

    The process starts with the standard M20 mix proportion of 1:1.5:3 (1 part cement, 1.5 parts sand, and 3 parts gravel). A crucial step often overlooked is accounting for the shrinkage that occurs when wet concrete hardens. To compensate for this volume loss, civil engineers apply a safety factor (typically 1.54 to 1.57) to the desired wet volume to determine the required dry volume of materials.

    Following the calculations in the image to get 1 cubic meter of finished concrete, you would need:

    Cement: 0.28 m³, or approximately 8 bags.

    Sand: 0.42 m³, or about 16 cubic feet.

    Aggregate (Gravel): 0.85 m³, or about 21 cubic feet.

    This is a fantastic reference for getting your mix proportions right every time!

    #CivilEngineering #Construction #ConcreteMix #BuildingTips #DIYProjects #Engineering #M20Concrete #ConstructionMath #BuildingMaterials
    This infographic explains how to calculate the exact amounts of cement, sand, and gravel needed for M20 grade concrete. The process starts with the standard M20 mix proportion of 1:1.5:3 (1 part cement, 1.5 parts sand, and 3 parts gravel). A crucial step often overlooked is accounting for the shrinkage that occurs when wet concrete hardens. To compensate for this volume loss, civil engineers apply a safety factor (typically 1.54 to 1.57) to the desired wet volume to determine the required dry volume of materials. Following the calculations in the image to get 1 cubic meter of finished concrete, you would need: Cement: 0.28 m³, or approximately 8 bags. Sand: 0.42 m³, or about 16 cubic feet. Aggregate (Gravel): 0.85 m³, or about 21 cubic feet. This is a fantastic reference for getting your mix proportions right every time! #CivilEngineering #Construction #ConcreteMix #BuildingTips #DIYProjects #Engineering #M20Concrete #ConstructionMath #BuildingMaterials
    0 Comments 0 Shares 1671 Views
  • Step-by-step explanation of how reinforced and prestressed concrete beams work under heavy loads. Concrete alone is strong in compression but weak in tension, which is why reinforcement is crucial for structural safety and durability.

    Concrete Beam Under Load: A plain concrete beam bends when a heavy load (like a truck) is applied, showing its natural weakness under tension.
    Cracking at the Base: The base of the beam begins to crack because concrete is being pulled apart due to tensile stress.
    Reinforced with Steel Rods: By placing a steel rod inside the beam, the reinforcement holds the concrete together, preventing cracks and providing tensile strength.
    Prestressed Concrete: When the steel rod is stretched before pouring concrete and then released, it compresses the beam. This pre-compression counters the tensile forces when loads are applied, making the beam significantly stronger and more durable.

    This is why modern construction uses reinforced and prestressed concrete beams in bridges, buildings, and highways, ensuring safety and longevity under massive loads.

    #EngineeringExplained #CivilEngineering #ConcreteStructures #StructuralEngineering #ReinforcedConcrete #PrestressedConcrete #ConstructionTech
    Step-by-step explanation of how reinforced and prestressed concrete beams work under heavy loads. Concrete alone is strong in compression but weak in tension, which is why reinforcement is crucial for structural safety and durability. 1️⃣ Concrete Beam Under Load: A plain concrete beam bends when a heavy load (like a truck) is applied, showing its natural weakness under tension. 2️⃣ Cracking at the Base: The base of the beam begins to crack because concrete is being pulled apart due to tensile stress. 3️⃣ Reinforced with Steel Rods: By placing a steel rod inside the beam, the reinforcement holds the concrete together, preventing cracks and providing tensile strength. 4️⃣ Prestressed Concrete: When the steel rod is stretched before pouring concrete and then released, it compresses the beam. This pre-compression counters the tensile forces when loads are applied, making the beam significantly stronger and more durable. 👉 This is why modern construction uses reinforced and prestressed concrete beams in bridges, buildings, and highways, ensuring safety and longevity under massive loads. 🚛🏗️ #EngineeringExplained #CivilEngineering #ConcreteStructures #StructuralEngineering #ReinforcedConcrete #PrestressedConcrete #ConstructionTech
    0 Comments 0 Shares 1972 Views